标题:
特殊四边形中的折叠问题1
[打印本页]
作者:
hykzxx
时间:
2023-7-27 17:31
标题:
特殊四边形中的折叠问题1
特殊四边形中的折叠问题 第 1 课时
理解平行四边形、菱形、矩形、正方形的概念,探索并证明平行四边形、菱形、矩形、正方形的性质定理和判定定理。
能够综合利用图形与几何问题中的相关知识解决折叠问题中的计算问题
能够综合利用图形与几何问题中的相关知识解决折叠问题中的计算问题
能够综合利用图形与几何问题中的相关知识解决折叠问题中的计算问题
一、知识点回顾:
复习特殊四边形的性质,折叠的性质
二、自主学习
平行四边形中的折叠
1.如图,平行四边形ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD’E处,若∠B=60°,AB=AD=4,当线段CD’长度最小时,折痕AE的长度是 。
变式探究:1.如图,平行四边形ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD’E处,若∠B=60°,AB=10,AD=5,当AD'与 ABCD的一边垂直时,DE的长度是 。
三、活动探究
例题:在矩形ABCD中,AB=4,BC=6,点E为BC边上的一点,将△ABE沿AE折叠至△AB′E(点B的对应点为点B′).
(1)如图①,当点E与点C重合时,CB′交AD于点F,则DF的长是 .
(2)如图②,当点E为BC边的中点,连接B′C,则B′C的长是 .
(3)如图③,当E为BC的三等分点时,延长EB′交AD边于点M,则线段DM的长是_______.
(4)如图④,连接B′C,B′D,当△B′DC是以B′D为腰的等腰三角形时,BE的长为________________.
三、当堂检测
1.如图,在矩形ABCD中,AB =6,AD =3.E是AB边上一点,AE=2,F是直线CD上一动点,作 AEF关于直线EF的对称图形,点A的对应点为点A',当点E,A',C三点在一条直线上时,DF的长度为 。
2. (2016河南15题3分)如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M、N,当点B′为线段MN的三等分点时,BE的长为 .
五.课堂小结:本节课你有什么收获?
特殊四边形中的折叠问题
一、考点梳理:
特殊四边形的性质,折叠的性质
二、知识探究 练习(学生板书解题过程)
作者:
阿弥托佛
时间:
2023-8-4 06:23
谢谢分享!
作者:
阿弥托佛
时间:
2023-8-4 06:23
谢谢分享!
欢迎光临 华声论坛 (http://bbs.voc.com.cn/)